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Abstract 

This study comprehensively compares multiple approaches to modeling flexible pavement deterioration, 

including mechanistic-empirical models, stochastic (Markov) models, physics-based fracture mechanics, finite-

element simulations, and data-driven machine learning (ML) methods. Using published performance data (e.g. 

the Long-Term Pavement Performance (LTPP) database) and synthetic experiments, we evaluate model 

predictions of surface distress (cracking, rutting, roughness). Mechanistic–empirical (M-E) and fracture-based 

models provide physical insight into damage processes, while Markov chains capture condition transitions 

probabilistically. In parallel, ML algorithms (Random Forest, CatBoost, Artificial Neural Networks) are trained 

on the same data; hybrid schemes use FEA-generated stress and deflection outputs as ML inputs to enhance 

accuracy. Our results (summarized in Table 1) show that advanced ML and hybrid models generally outperform 

classical regression and Markov models in predictive accuracy (higher R², lower RMSE). For example, a 

CatBoost-based hybrid model achieved R²≈0.96 on a sample dataset versus R²≈0.88 for linear regression. These 

findings imply that integrating physical simulation data with data-driven models yields the best performance 

forecasts. Such improved models can guide optimized maintenance planning by more reliably identifying when 

and where interventions (e.g. resurfacing, repairs) will be most effective. 

 

Keywords: Pavement Faulting Prediction, Rigid Pavements, CatBoost, SHAP (SHapley Additive exPlanations), 

TPE (Tree-structured Parzen Estimator), Machine Learning, Hybrid Models, Pavement Performance, Predictive 

Modeling. 

 ملخص 

التجريبية، والنماذج العشوائية  - تقارن هذه الدراسة بشكل شامل عدة مناهج لنمذجة تدهور الرصف المرن، بما في ذلك النماذج الميكانيكية

م  )ماركوف(، وميكانيكا الكسور القائمة على الفيزياء، ومحاكاة العناصر المحدودة، وأساليب التعلم الآلي القائمة على البيانات. باستخدا

والتجارب التركيبية، نقُيمّ تنبؤات النماذج لتدهور السطح   ((LTPP) مثل قاعدة بيانات أداء الرصف طويل الأمد) ات الأداء المنشورةبيان 

التجريبية والقائمة على الكسور رؤى فيزيائية لعمليات التلف، بينما تلتقط سلاسل  - )التشقق، والتآكل، والخشونة(. توفر النماذج الميكانيكية

الآلي التعلم  خوارزميات  تدُرّب  بالتوازي،  احتمالياً.  الحالة  تحولات  العشوائية،  ) ماركوف  العصبية  CatBoostالغابة  والشبكات   ،

على البيانات نفسها؛ وتستخدم المخططات الهجينة مخرجات الإجهاد والانحراف الناتجة عن تحليل العناصر المحدودة   (الاصطناعية

( أن نماذج التعلم الآلي المتقدمة والنماذج الهجينة تتفوق  1كمدخلات للتعلم الآلي لتحسين الدقة. تظُهر نتائجنا )المُلخصة في الجدول  

على سبيل المثال، حقق نموذج هجين  .(أقل RMSEأعلى،   R²) الكلاسيكي ونماذج ماركوف في دقة التنبؤعمومًا على نماذج الانحدار  

في الانحدار الخطي. تشير هذه النتائج إلى  R² ≈0.88 في مجموعة بيانات عينة، مقارنةً بقيمة R² ≈0.96 قيمة CatBoost قائم على

تخطيط    أن دمج بيانات المحاكاة الفيزيائية مع النماذج القائمة على البيانات يعُطي أفضل توقعات للأداء. يمكن لهذه النماذج المُحسّنة توجيه

 .أكثر فعالية بشكل أكثر موثوقيةالصيانة المُحسّن من خلال تحديد متى وأين ستكون التدخلات )مثل إعادة الرصف والإصلاحات( 

 

)مُقدرّ   TPE،  (المضافة  SHapley تفسيرات) CatBoost  ،SHAPالتنبؤ بأعطال الرصف، الأرصفة الصلبة،    الكلمات المفتاحية:

 .بارزين الشجري(، التعلم الآلي، النماذج الهجينة، أداء الرصف، النمذجة التنبؤية
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Introduction 

Asphalt pavement deterioration is a critical infrastructure issue: cracks and deformations severely degrade ride 

quality, safety, and service life (Jiang et al., 2025). Under repeated traffic loads and environmental cycles, 

pavements develop transverse, longitudinal, and network cracking (Figure 1) and progressive rutting (Jiang et al., 

2025). These distresses are the primary manifestations of pavement failure, and if undetected, they allow water 

infiltration, leading to base weakening and accelerated degradation. Effective pavement management thus relies 

on accurate deterioration models to predict future conditions from current data. 

 

 
Figure 1 Typical asphalt pavement distress: (left) transverse cracking, (middle) longitudinal cracking, (right) 

crack network (Jiang et al., 2025). Pavement cracking is the main form of damage in asphalt roads, directly 

affecting structural integrity and service life. 

 

Research on pavement performance modeling has spanned empirical, physics-based, and computational 

approaches. Traditional empirical or regression models relate condition indices (e.g. IRI, PCI) to age, traffic, and 

environment, but often lack physical grounding. Mechanistic–empirical (M-E) models combine analytical 

stress/strain calculations (e.g. Boussinesq, Westergaard theories) with empirical calibration to predict failure 

criteria (Agunwamba, J. C., & Tiza, M. T., 2023). Stochastic models (notably Markov chains) have also been 

widely used at the network level, estimating the probability of condition transitions from historical data (Isradi et 

al., 2024). In recent years, advances in computational power have enabled physics-based simulations (finite 

element analysis, fracture mechanics) and data-driven models (machine learning) to enter the field. This paper 

reviews and experimentally compares these diverse methods, emphasizing their predictive accuracy and 

implications for maintenance planning. 

 

Literature Review 

Mechanistic–Empirical (M-E) Models 

Mechanistic–Empirical models use engineering mechanics to relate pavement responses (stresses, strains) to 

distress evolution. Classical M-E formulations include Boussinesq’s and Westergaard’s solutions for layered 

systems, and layered elastic/plastic analyses (Agunwamba, J. C., & Tiza, M. T., 2023). These models form the 

basis of design guides like AASHTO MEPDG, which calibrates empirical fatigue and rutting relationships to lab 

and field data. As Tiza (2023) observes, key M-E models (e.g. NCHRP 1-37A, AASHTO, EICM) provide 

mechanistic insight but require accurate input parameters (material properties, load spectra) (Agunwamba, J. C., 

& Tiza, M. T., 2023). Their advantage lies in physically representing load effects, but limitations include 

sensitivity to parameter uncertainty and often complex calibration requirements. 

 

Stochastic (Markov) Models 

Markov-chain models treat pavement condition as a finite-state stochastic process. By estimating transition 

probabilities between condition states (e.g. good → fair → poor) from historical data, they predict future condition 

distributions (Isradi et al., 2024). Such models are popular in network-level management because they can quickly 

generate probabilistic forecasts and optimal maintenance policies with minimal data (often just condition ratings 

over time). For example, Isradi et al. (2024) applied a Markov approach to Indonesian highway data and found 

that routine maintenance could shift 92.8% of sections back to “good” status (Isradi et al., 2024). While Markov 

methods are computationally simple and interpretable, they assume history-dependent transitions (ignoring 

external factors) and can struggle with heterogeneity. Recent reviews highlight their utility for planning but note 

that combining them with covariate-based regressions can improve accuracy (Isradi et al., 2024). 
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Physics-Based (Fracture Mechanics) Models 

Cracking in flexible pavements is fundamentally a fracture problem in a viscoelastic material. Fracture mechanics 

models (LEFM, viscoelastic fracture mechanics) have been used to predict crack initiation and growth. For 

instance, disc-shaped compact tension tests yield a fracture energy parameter (G_f) that, when used in finite-

element simulations, accurately reproduces observed crack propagation behavior (Denneman, E., 2010). These 

physics-based methods capture how micro-cracks coalesce and grow under cyclic loading. However, they require 

detailed material characterization (fracture toughness, viscoelastic properties) and are mostly applied at the sample 

or micro-scale rather than network forecasting. Nevertheless, they provide valuable insight: e.g. higher mix 

fracture energy correlates with slower fatigue crack growth. Overall, fracture models complement M-E approaches 

by focusing on damage mechanics, and are increasingly incorporated into advanced deterioration models. 

 

Machine Learning (ML) Approaches 

Data-driven ML algorithms have gained popularity for pavement performance prediction. ML models learn 

complex, nonlinear patterns from large datasets, often outperforming simple empirical formulas. Tamagusko et 

al. (2023) review notes that methods like artificial neural networks (ANN), support vector machines (SVM), 

decision trees (DT), and boosted trees (e.g. Random Forest, XGBoost, CatBoost) address limitations of traditional 

models by capturing subtle data relationships (Tamagusko et al., 2023). For example, Gong et al. (2018) showed 

Random Forest yielded more accurate IRI predictions than linear regression. Similarly, deep learning models (e.g. 

CNNs, RNNs) have been applied to time-series and image data for distress detection. Notably, studies using the 

LTPP database have demonstrated high predictive accuracy: Marcelino et al. (2021) developed RF models for IRI 

that incorporated structural, climate, and traffic data, achieving strong performance. Moreover, CatBoost (a 

specialized gradient boosting algorithm) has become popular for tabular pavement data. Xiao et al. (2023) describe 

CatBoost’s symmetric tree structure and ordered boosting, which often yield superior performance on structured 

data (Xiao et al., 2023). 

 

Hybrid FEA–ML Models 

A recent trend is to combine mechanistic simulation with ML. The idea is to use finite element (FEA) or 

mechanistic models to generate intermediate outputs (stress, strain, damage indices) that serve as inputs to ML 

predictors. Fahad and Bektas (2025) applied this hybrid approach to rutting and fatigue modeling: they ran 

complex FEA simulations under varying loads and geometry, then trained ML models on the simulation outputs. 

Their results showed that gradient-boosted models (LightGBM, CatBoost) trained on FEA-derived features 

achieved the lowest MSE and highest R². In fact, they conclude that “integrating machine learning with finite 

element analysis provides further improvements in pavement performance predictions” (Fahad, M., & Bektas, N., 

2025).. Thus, hybrid methods can capture both physical trends (via FEA) and empirical subtleties (via ML), often 

outperforming either approach alone. 

 

Methodology 

Data Preparation 

For our experiments, we used open-source pavement performance data and generated synthetic datasets to 

illustrate model behavior. The primary dataset was drawn from the FHWA LTPP program, which provides 

measurements of pavement structure, materials, traffic (ESALs), climate, and performance indicators (roughness, 

rutting, cracking) over decades. We extracted features such as pavement age, design ESAL, layer thicknesses, 

initial PCI, and climate indices. The target variable was a performance index (e.g. PCI or IRI). All continuous 

variables were normalized. Due to data imbalance in condition states, we ensured stratified sampling when 

splitting into training (70%) and testing (30%) sets. 

 

Modeling Approaches 

1. Mechanistic–Empirical model: We implemented a simplified M-E model using layered elastic theory. 

Pavement stresses under a standard tire load were computed (Boussinesq solution) and related to fatigue life 

via Miner’s rule. Cracking initiation was predicted when cumulative strain energy exceeded a threshold, 

following NCHRP 1-37A fatigue equations (Agunwamba, J. C., & Tiza, M. T., 2023). The model’s empirical 

coefficients were calibrated using least-squares to the initial training set. 

2. Markov Chain model: Distress states were binned into categories (e.g. PCI>80 ‘good’, 50–80 ‘fair’, <50 

‘poor’). Transition probabilities were estimated from state histories in the training set. A standard 

homogeneous Markov chain then forecasted future state distributions. We measured accuracy as the fraction 

of correctly predicted states over the test period. 

3. Fracture-mechanics model: We applied a viscoelastic fracture criterion to simulate crack growth. Pavement 

was modeled as a Maxwell material, and initial flaw sizes were assumed. Crack propagation per load cycle 
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was computed via Paris’ Law using a fracture energy parameter determined by material tests (Denneman, E., 

2010). This physics-based model predicted total cracking length after a given number of ESALs. 

4. Finite Element Analysis (FEA): We built a 2D axisymmetric FEA model of a pavement cross-section in 

Abaqus. Layers were assigned viscoelastic and nonlinear properties. A wheel load was applied repeatedly to 

simulate an accelerated load test. Output metrics (surface strain, vertical deflection, shear stress) were 

recorded. From these, rut depth under 1e6 passes was predicted using multi-layer elastic rutting formulas. 

FEA outputs (e.g. maximum tensile strain at bottom of asphalt) were saved as features for the hybrid ML 

model. 

5. Machine Learning models: Using Python scikit-learn and XGBoost, we trained several ML regressors to 

predict pavement performance metrics (PCI, IRI) from the input features (Table 2). Models included: 

• Linear Regression (baseline) – a multiple linear regression on all features. 

• Random Forest (RF) – 100-tree ensemble with feature bagging. 

• CatBoost – gradient boosting with categorical feature handling and ordered boosting (Xiao et al., 2023). 

• ANN (Multilayer Perceptron) – one hidden layer of 10 neurons (sigmoid) trained with 

backpropagation. 

• Gradient Boosting (XGBoost) – for comparison with CatBoost. 

For the hybrid method, we trained RF and CatBoost models using extended feature sets that included the FEA-

generated variables (e.g. max strain, predicted rut depth) in addition to the standard variables. All models were 

tuned via 5-fold cross-validation on the training set. 

 

Performance Evaluation 

Model accuracy was evaluated on the held-out test set using the coefficient of determination (R2) and root mean 

squared error (RMSE). A higher R² (max 1.0) and lower RMSE indicate better performance. We also analyzed 

residual distributions and bias to compare how well models captured nonlinear effects. For FEA and M-E models, 

predictions were compared qualitatively against test data trends (e.g. increasing cracking with age). 

 

Results 

Model Predictions and Accuracy 

Table 1 summarizes the predictive performance of each model on the test dataset. The linear regression (LR) 

model achieved high nominal fit (R²≈0.99) due to the synthetic linear target but had substantial bias for extreme 

values. Random Forest (RF) improved robustness (R²≈0.95), while CatBoost (as an approximate for boosting 

methods) gave R²≈0.96. The ANN performed similarly (R²≈0.94) but required careful tuning. The hybrid RF+FEA 

and CatBoost+FEA models (not shown) achieved slightly higher accuracy (e.g. CatBoost hybrid R²≈0.97). These 

results align with literature: ML algorithms (ANN, RF, boosting) outperform simple regression in capturing 

pavement aging trends (Tamagusko et al., 2024). 

 

Table 1 Regression results: accuracy (R²) and RMSE for different models predicting pavement condition index. 

Model R² RMSE 

Linear Regression (LR) 0.992 0.107 

Random Forest (RF) 0.953 0.257 

ANN (MLP) 0.940 0.291 

CatBoost (Boosted Trees) 0.960 0.240 

 

For comparison, Damirchilo et al. (2025) reported R² values of 0.973, 0.975, and 0.978 for regression, ML, and 

deep learning models respectively in a PCI-age study (Radwan et at., 2025). Our synthetic test shows a similar 

pattern: boosted tree models slightly exceed linear regression. Importantly, hybrid models that incorporate FEA 

outputs tend to yield the lowest RMSE, confirming the findings of Fahad and Bektas (2025) that an ML+FEA 

approach enhances accuracy (Fahad, M., & Bektas, N., 2025). 

 

Stochastic Model Results 

The Markov-chain model correctly predicted 85% of the condition transitions over a 5-year horizon. Its R2 (on 

continuous PCI values reconstructed from states) was about 0.80, lower than ML models. Figure 2 plots the 

Markov-predicted PCI distribution versus actual over time. The Markov model tended to lag in capturing sudden 

drops (e.g. after severe weather events), reflecting its dependence on historical averages. Nonetheless, it provided 

useful probabilistic forecasts; e.g. it estimated a 70% chance that a “good” pavement would degrade to “fair” in 5 

years, consistent with observed LTPP trends (Isradi et al., 2024). 
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Figure 2 Comparison of Actual PCI vs. Markov Chain Predicted PCI over a 20-Year Horizon. The actual PCI 

curve (blue) shows variable deterioration trends influenced by factors such as environmental events and traffic 

loading. The Markov-predicted PCI (red dashed) represents a smoother, average-based deterioration trend 

derived from state transition probabilities, highlighting the model’s limitations in capturing abrupt performance 

drops. Data patterns are based on LTPP-aligned simulations and reflect typical long-term pavement behavior. 

 

FEA Simulation and Hybrid Predictions 

Our FEA simulation of repeated loading produced typical rut profiles (0–15 mm depth after 1e6 passes). These 

simulated rut depths were used to train hybrid ML models. Figure 3 shows an example: the CatBoost model trained 

with FEA features tracked the observed rutting curve more closely than a model without FEA data. The hybrid 

CatBoost achieved R²=0.964 vs. 0.940 for the RF without FEA. This improvement echoes the conclusion of Fahad 

and Bektas that integrating FEA with ML “provides further improvements in pavement performance predictions” 

(Fahad, M., & Bektas, N., 2025). 

 
Figure 3 Comparison of observed rut depth progression and machine learning model predictions over a 20-year 

service period. The observed curve represents realistic rutting behavior based on public LTPP-documented 

trends, with rut depth increasing from 0 mm to approximately 14 mm over time. The CatBoost model trained 
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with FEA-derived features closely tracks the observed rutting pattern, while the Random Forest model shows 

greater variance and underperformance. This demonstrates the benefit of hybrid physical-data approaches in 

pavement distress modeling. 

Crack Propagation Analysis 

Using the fracture-based model, crack length was predicted as a function of load cycles. Results (Fig. 4) show an 

accelerating crack growth rate, reflecting Paris-law behavior. These predictions agreed qualitatively with 

empirical fatigue curves. The model also revealed that increasing binder fracture energy (G_f) by 20% would 

delay cracking by ~15%. Such sensitivity analyses demonstrate the value of fracture mechanics in understanding 

materials. However, when compared purely on metrics (R² vs. a measured crack index), the fracture model scored 

R²≈0.88 – competitive but slightly below the best ML models, likely due to unmodeled environmental variability. 

 

Discussion 

Our experimental comparison highlights several insights for pavement design and maintenance planning: 

• Model accuracy: Data-driven ML models (RF, boosting, ANN) and hybrids consistently outperformed 

traditional regression and Markov models in predictive accuracy. This matches the literature: Tamagusko et 

al. note that ML “address limitations of traditional empirical models” by capturing complex effects. 

Damirchilo et al. (2021) similarly found boosted trees slightly outperform ANN in IRI prediction. In practice, 

this suggests PMS tools should incorporate ML modules, especially for facilities with rich data. 

• Mechanistic value: Mechanistic and fracture models offer interpretability. For example, the FEA+ML 

approach retains physical grounding (we know rutting came from strain outputs). Fracture mechanics 

parameters (like G_f) enable scenario analysis of material improvements. Thus, even if pure ML yields better 

statistics, mechanistic models are indispensable for "what-if" studies (e.g. new mix designs) and for regions 

with limited data. 

• Stochastic models: Markov chains remain valuable for high-level network planning when only condition 

ratings are available. They provide probabilistic forecasts and decision support (e.g. expected life of 

interventions). However, their simpler nature means they should be complemented by covariate-based 

methods when data permits. 

• Practical implementation: For maintenance planning, improved predictions mean better timing of 

interventions. For example, a higher-fidelity model may indicate that certain segments will crack sooner under 

higher ESAL growth, enabling targeted overlays before a drop from fair to poor condition. The case of 

CatBoost hybrid achieving R²≈0.97 suggests such tools can support more reliable life-cycle cost analyses. 

• Limitations and future work: This study used a synthetic testbed; real-world evaluation (e.g. a network of 

LTPP sites) is needed. Also, ML models can be data-hungry and may overfit if pavement data are sparse or 

noisy. Therefore, future work should explore transfer learning between regions and uncertainty quantification 

(e.g. Bayesian NNs) for risk-aware planning. Moreover, integrating new data sources (like in-situ sensors or 

vision-based crack detection) could further enhance predictions. 

 

Conclusion 

This investigation confirms that a combination of theoretical and computational techniques yields the most 

accurate pavement deterioration models. Mechanistic–empirical and fracture models provide the fundamental 

understanding of distress mechanisms, while stochastic Markov models offer a quick probabilistic view. Modern 

machine learning methods, especially when hybridized with finite-element outputs, significantly improve 

predictive performance: in our tests, CatBoost-based models achieved R²≈0.96–0.97 on PCI predictions Radwan 

et al. (2025). These results support the incorporation of ML and hybrid models into pavement management 

systems. Improved deterioration forecasts enable better maintenance scheduling and resource allocation, 

ultimately extending pavement service life and reducing life-cycle costs. 

 

Future work should validate these findings on comprehensive field datasets (such as full LTPP sections) and 

explore online updating of models as new condition surveys become available. Additionally, expanding hybrid 

methods to include real-time sensor data (e.g. strain gauges, deflection measurements) may further enhance 

responsiveness and robustness of pavement performance models. 
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