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Abstract:  

The paper presents a novel application of the residual gradient fuzzy actor-critic learning (RGFACL) algorithm 

to nonlinear level control of a two-tank system. In contrast to traditional fuzzy actor-critic methods using direct 

gradient methods, which are commonly susceptible to instability and convergence issues, the RGFACL algorithm 

presented in this work employs a residual gradient formulation to ensure a more precise and stable learning 

process. Moreover, the algorithm simultaneously adaptively adjusts the premise (input) and consequent (output) 

parameters of the fuzzy inference systems, increasing the expressiveness and flexibility of the control strategy. 

To the best of our knowledge, this is the first implementation of the RGFACL approach on a two-tank benchmark 

system. The simulation results demonstrate that the RGFACL algorithm achieved improved transient response, 

reduced overshoot, and enhanced robustness compared to the traditional PID controller. The RGFACL algorithm 

successfully handled abrupt setpoint changes, its ability to adjust within nonlinear, time-varying operating 

conditions clear. The results confirm the efficacy of employing the RGFACL learning algorithm to the nonlinear 

and complex environments.  
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 الملخص 

( المتبقي  بالتدرج  الضبابي  الناقد  الفاعل  تعلم  تطبيقاً جديداً لخوارزمية  البحثية  الورقة  الخطي في  RGFACLتقدم هذه  للتحكم غير   )

التدرج   باستخدام أساليب  الناقد  الفاعل  التي تعتمد على  التقليدية  التعلم الضبابي  ثنائي الخزانات. وعلى عكس أساليب  المستوى لنظام 

المعروضة في هذا العمل    RGFACLالمباشر، والتي غالباً ما تكون عرضة لمشاكل عدم الاستقرار والتقارب، تستخدم خوارزمية  

الفرضية  معلمات  تكيفي  بشكل  الخوارزمية  تضبط  ذلك،  على  علاوة  واستقرارًا.  دقة  أكثر  تعلم  عملية  لضمان  متبقي  تدرج  صيغة 

ل الضبابي، مما يزيد من مرونة استراتيجية التحكم وتعبيريتها. وعلى حد علمنا، يعُد  )المدخلات( والنتيجة )المخرجات( لأنظمة الاستدلا

حققت استجابةً   RGFACLعلى نظام معياري ثنائي الخزانات. وتظُهر نتائج المحاكاة أن خوارزمية   RGFACLهذا أول تطبيق لنهج 

التحكم   بوحدة  المتانة مقارنةً  التجاوز، وعززت  العابر، وقللت من  في    RGFACLالتقليدية. نجحت خوارزمية    PIDمُحسّنة للزمن 

التعامل مع التغيرات المفاجئة في نقاط الضبط، مع قدرتها الواضحة على التكيف في ظل ظروف تشغيل غير خطية ومتغيرة زمنياً.  

 في البيئات غير الخطية والمعقدة.  RGFACLوتؤكد النتائج فعالية استخدام خوارزمية التعلم 

 التعلم التعزيزي، التحكم المنطقي الضبابي، التدرج المتبقي، التحكم في مستوى الخزانين. الكلمات المفتاحية:

Introduction 

Fuzzy logic controllers (FLCs) have become popular for controlling nonlinear, uncertain, and ill-defined systems 

[3]-[6], [9], [22], [23]. A lot of supervised learning techniques including genetic algorithms, gradient descent and 

clustering have been employed for the tuning of FLCs by the input-output data [10]. However, these methods tend 

to depend on expert knowledge and can potentially have high cost in terms of expensive or difficult-to-obtain 

data. In contrast, reinforcement learning provides a model-free, reward-based paradigm that demands no a priori 

knowledge or expert guidance [17]. 

Reinforcement learning (RL) enables an agent to learn how to perform best actions from trial-and-error interaction 

in its world through only evaluative feedback, rather than through expert demonstrations [18], [19]. RL has been 
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successfully applied to robotic control [12], [14], [20] and nonlinear optimal control issues [21], [26], [27]. 

Traditional RL approaches utilize lookup tables as value functions, which suffer from the curse of dimensionality 

when the state size increases and cannot handle continuous differential-game worlds without discretization [11], 

[18]. To address these limitations, function approximation systems (FASs), namely gradient-descent–based 

approximators, are utilized in order to make RL scale up to large or continuous state–action spaces as well as 

enable online learning [18], [28]. Several fuzzy reinforcement learning algorithms have been introduced in the 

literature to control systems with continuous state-action spaces through gradient-descent-based FASs [12], [13], 

[15], [16]. The author in [15] proposed a fuzzy actor critic learning (FACL) algorithm that uses fuzzy inference 

systems (FISs), or FASs, to represent the continuous state-action spaces. The FACL algorithm used the temporal 

difference (TD) error calculated by the state value function to tune the parameters of the FASs. However, the 

FACL algorithm only tuned the output parameters of the FISs, while the input parameters of the FISs were kept 

fixed. The authors in [16] proposed the Q-learning fuzzy inference system (QLFIS) algorithm. Unlike the FACL 

algorithm, the QLFIS algorithm tuned both the input and output parameters of its FISs. However, both the FACL 

and QLFIS algorithms relied on what commonly referred to as “direct algorithms described in [29]” to tune their 

FASs parameters. In spite of the fact that the direct algorithms have been widely applied in the tunning process 

for the FISs’ parameters, the direct algorithms may lead FISs to indeterminate solutions and to divergence in 

others [29]-[31]. The authors in [12], [13] proposed the residual gradient fuzzy actor critic learning (RGFACL) 

algorithm. The RGFACL used the TD error of the state-action value functions of the two successive states in the 

state transition to tune the input and output parameters of its FASs. Unlike the FACL and QLFIS algorithms, the 

RGFACL algorithm relied on the residual gradient algorithms to tune the input and out of its FISs, where the 

residual gradient algorithms are always guaranteed to converge to a local minimum compared to the direct 

methods [29]-[31]. 

This paper represents the novelty of applying a residual gradient-based fuzzy actor-critic learning (RGFACL) 

algorithm for the nonlinear two-tank level control problem. As compared to traditional fuzzy actor-critic schemes 

using direct gradient methods that are highly sensitive to instability and convergence issues, the proposed solution 

implements a residual gradient formulation to yield a more accurate and stable learning trajectory. In addition, the 

algorithm also dynamically changes both the premise (input) and consequent (output) parameters of the fuzzy 

inference systems in parallel, enhancing the flexibility and expressiveness of the control policy. To our knowledge, 

it is the initial application of the RGFACL algorithm to the two-tank benchmark system and has demonstrated 

superior control performance in terms of tracking accuracy, convergence rate, and disturbance rejection, and 

thereby its potential in practical applications for industrial process control. 

Preliminary concepts and notations 

There are several types of fuzzy inference systems (FIS) in literature. The ones used in this work are the zero-

order Takagi-Sugeno-Kang (TSK) FISs with constant consequences which are represented in [32], [33]. In each 

FIS, there are 𝐿 rules, and there are 𝑛 states and one constant consequent in each rule. Each rule (𝑙 =  1, . . . , 𝐿) 

is represented as follows: 

𝑅𝑙:   IF  𝑠1  is   𝑓1
𝑙 , …  , and  𝑠𝑛   is   𝑓𝑛

𝑙      THEN      𝑧𝑙 = 𝑘𝑙          (1) 

where 𝑠𝑖, (𝑖 =  1, . . . , 𝑛), is the ith input state to the FIS, 𝑛 is the number of input states, and 𝑓𝑖
𝑙 is the linguistic 

value of the input state 𝑠𝑖 at the rule 𝑙. Each input state 𝑠𝑖 has ℎ membership functions (MFs). The variable 𝑧𝑙 is 

the output of the rule 𝑙, and 𝑘𝑙 is a constant that describes the consequent parameter of the rule 𝑙. We used Gaussian 

membership functions (MFs) for the inputs to the FISs, where each MF is defined as follows, 

                      μ𝐹𝑖
𝑙
(𝑠𝑖) = exp (− (

𝑠𝑖−𝑚

σ
)

2

)                                        (2) 

where σ and 𝑚 represent the standard deviation and the mean of the MF, respectively. 

In each FIS, there are 𝐻 of standard deviations and 𝐻 of means of all MFs, where 𝐻 = 𝑛 × ℎ. 

The residual gradient fuzzy actor critic learning (RGFACL) algorithm 

The RGFACL algorithm uses three FISs to represent the continuous state-action spaces; one for the actor (fuzzy 

logic controller, FLC), and two for the critics [12], [13]. The critic estimates the value functions 𝑉𝑡(𝑠𝑡) and 

𝑉𝑡(𝑠𝑡+1) of the learning agent at two different states, 𝑠𝑡 and 𝑠𝑡+1 respectively. The actor, on the other hand, is 

responsible for providing a continuous action 𝑢𝑡 at each continuous state st. The RGFACL algorithm is shown in 

Fig (1). The critic has input and output parameters. The input parameters are the parameters of the membership 

functions (MFs) of the critic’s inputs: σ𝑗 and 𝑚𝑗 (where 𝑗 = 1, . . . , 𝐻); while the output parameters are the 
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consequent parameters of its rules, 𝑘𝑙. We refer to the input and output parameters of the critic as ψ𝐶. Similarly, 

the actor has input and output parameters. The input parameters of the actor are σ𝑗 and 𝑚𝑗, the parameters of the 

MFs of the critic’s input. On the other hand, the critic’s outputs are 𝑘𝑙, the consequent parameters of the critic’s 

rules 𝑘𝑙. We refer to the input and the output parameters of the actor as ψ𝐴. The temporal difference error, Δ𝑡, and 

its mean square error, 𝐸, are defined as follows, 

                           Δ𝑡 = 𝑟𝑡 + γ𝑉𝑡(𝑠𝑡+1) − 𝑉𝑡(𝑠𝑡)                                  (3) 

                                           𝐸 =
1

2
Δ𝑡

2                                                    (4) 

where 𝑟𝑡 is the immediate reward of the learning agent, and γ is a discount factor. 

 

Figure 1. The RGFACL algorithm [12], [13], [16]. 

The RGFACL algorithm updates the input and output parameters of its actor and critics based on the residual 

gradient value iteration algorithm described in [29]. The RGFACL algorithm uses the following rules to update 

the input and output parameters of its actor and critics [12], [13]: 

                                  ψ𝑡+1
𝐶 = ψ𝑡

𝐶 − α
∂𝐸

∂ψ𝑡
𝐶                                       (5) 

                     ψ𝑡+1
𝐴 = ψ𝑡

𝐴 + βΔ𝑡
∂𝑢𝑡

∂ψ𝑡
𝐴 [

𝑢𝑐−𝑢𝑡

σ𝑛
]                                    (6) 

where α and β are learning rates, 𝑢𝑡 is the output of the actor, and 𝑢𝑐 is the output of the actor with a random 

Gaussian noise. 

Two-tank level system 

A. System description: 

The two-tank level system consists of two vertically placed tanks. Tank 1 receives input from the exterior and 

output to Tank 2. Tank 2’s output goes to the environment. The two tanks should be cylindrical with a constant 

cross-sectional area and incompressible fluid.  

The following notations can be employed: 

• 𝐴1, 𝐴2: Cross-sectional area of Tank 1 and Tank 2 [m2]. 

• ℎ1(𝑡), ℎ2(𝑡): Liquid heights in Tank 1 and Tank 2 at time 𝑡 [m]. 

• 𝑞𝑖𝑛(𝑡): Rate of inflow into Tank 1 [𝑚3/𝑠]. 

• 𝑞12(𝑡): Rate of flow from Tank 1 into Tank 2 [𝑚3/𝑠]. 

• qout(t): Rate of outflow from Tank 2 to the environment [𝑚3/𝑠]. 

• 𝐶1, 𝐶2: Flow coefficients for Tank 1 and Tank 2 discharge outlets. 

Assuming flow rates follow Torricelli’s Law for free outflow under gravity [1], the inter-tank and output flow 

rates are given by: 

                    𝑞12(𝑡) = 𝐶1√ℎ1(𝑡) − ℎ2(𝑡)                                   (7) 
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                    𝑞𝑜𝑢𝑡(𝑡) = 𝐶2√ℎ2(𝑡)                                              (8) 

B. Continuous-time model: 

Imposing a mass balance on the two tanks results in the following first-order nonlinear differential equations [1]: 

Tank 1: 

            𝐴1
𝑑ℎ1(𝑡)

𝑑𝑡
= 𝑞𝑖𝑛(𝑡) − 𝐶1√ℎ1(𝑡) − ℎ2(𝑡)                           (9) 

Tank 2: 

         𝐴2
𝑑ℎ2(𝑡)

𝑑𝑡
= 𝐶1√ℎ1(𝑡) − ℎ2(𝑡) − 𝐶2√ℎ2(𝑡)                        (10) 

These equations capture the nonlinear behavior of the tank system due to the square-root flow relationships. 

C. Discrete-time model: 

Using the forward Euler method for discretization with a sampling time 𝑇𝑠, the discrete-time model becomes: 

 ℎ1(𝑘 + 1) = ℎ1(𝑘) +
𝑇𝑠

𝐴1
(𝑞𝑖𝑛(𝑘) − 𝐶1√ℎ1(𝑘) − ℎ2(𝑘))              (11) 

ℎ2(𝑘 + 1) = ℎ2(𝑘) +
𝑇𝑠

𝐴2
(𝐶1√ℎ1(𝑘) − ℎ2(𝑘) − 𝐶2√ℎ2(𝑘))          (12) 

This discrete model is suitable for digital control design and simulation applications. 

Reward function for the RGFACL algorithm in a two-tank level system 

The RGFACL-based learning agent tunes the parameters of both the actor and the critics so that the liquid level 

of the second tank, ℎ2(𝑡), converges to a reference level ℎ𝑟𝑒𝑓  . The reward function at time 𝑡 is formulated as: 

             𝑟(𝑡) = −α1𝑒(𝑡)2 − α2Δ𝑒(𝑡)2 − α3Δ𝑢(𝑡)2                       (13) 

where, α1, α2, α3 > 0 are weighting coefficients,  

𝑒(𝑡) = ℎref − ℎ2(𝑡) 

is the error at time𝑡,  

Δ𝑒(𝑡) = 𝑒(𝑡) − 𝑒(𝑡 − 1) 

is the change in error, and 

Δ𝑢(𝑡) = 𝑢(𝑡) − 𝑢(𝑡 − 1) 

is the change in the actor’s output. 

• The term −𝛼1𝑒(𝑡)2 encourages accuracy, and penalizes large deviations from the reference level. 

• The term −𝛼2Δ𝑒(𝑡)2 penalizes rapid changes in error, encouraging stability and discouraging 

oscillations. 

The term −α3Δ𝑢(𝑡)2 penalizes aggressive control actions, promoting smooth control signals. 

Simulation and results 

A. Simulation Setup: 

The RGFACL algorithm is implemented to control the level of the second tank in a nonlinear two-tank liquid 

level system. The RGFACL algorithm tunes the parameters of its actor and critics so that the error between the 

second tank’s level ℎ2 and a reference level is minimized (i.e. to maximize the reward function 𝑟(𝑡)). 

The system dynamics are described by: 

𝑄out1 = 0.3√ℎ1 

𝑄out2 = 0.3√ℎ2 

where ℎ1 and ℎ2 are the fluid heights in tanks 1 and 2, respectively. The tanks cross-sectional areas and timestep 

used are 𝐴1 = 1.0, 𝐴2 = 0.8,  Δ𝑡 = 0.05 seconds. The reference level ℎref was randomly initialized during training 

within the range 5 to 10 meters. The state 𝑠_𝑡 is defined as the error between the level of the second tank and the 
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target level. Three Gaussian membership functions (MFs) are used to define the fuzzy sets of each input of the 

three FISs. The learning rates of the RGFACL algorithm are chosen as those presented in [13]. 

B. Results: 

The training was conducted over 50 episodes with 5000 steps in each episode. During the test, the level reference 

was initially set at ℎ𝑟𝑒𝑓  =10.0; the simulation took place over 10,000 steps, with the change of level reference 

applied at 𝑡 = 3000 (down to 5.0𝑚) and at 𝑡 = 6000 (back up to 10.0𝑚), to measure the tracking performance. 

Figure 2 shows the tank level response over time. The RGFACL algorithm successfully tuned the input and output 

parameters of its actor and critics so that the level of the second tank reaches the target level with fast convergence 

and minimal overshoot, despite sudden changes in the target level.  

C. Discussion: 

The simulation experiments evaluated the performance of the RGFACL algorithm against a conventional PID 

controller in a two-tank level control system. The dynamics of the two-tank level system were governed by 

nonlinear flow equations, with Tank 2’s level (ℎ2) regulated to track reference setpoints (ℎ𝑟𝑒𝑓) under abrupt 

changes at 𝑡 = 3000s (10𝑚 → 5𝑚) and 𝑡 = 6000𝑠 (5𝑚 → 10𝑚). The RGFACL algorithm was more adaptable 

than the PID controller and took less time to settle and had lower overshoot, as seen in Figure 2. The reward 

function successfully balanced transient and steady-state performance through penalizing the squared error, 

control effort, and input deviations. The PID controller, although stable, exhibited steady oscillations and small 

steady-state errors, highlighting the limitation of fixed gains on nonlinear systems. The RGFACL algorithm 

provided rapid convergence of the level of the second tank to its desired level, even under setpoint changes. The 

results confirm the efficacy of employing the RGFACL algorithm to the nonlinear and complex environments. 

 
Figure 2. Tank level ℎ2 response over time under the RGFACL algorithm with varying reference levels ℎ𝑟𝑒𝑓 . 

Conclusion 

In this research study, the residual gradient fuzzy actor-critic learning (RGFACL) algorithm was evaluated and 

implemented for controlling a nonlinear two-tank level system. The RGFACL algorithm succeeded in maintaining 

the level of the second tank in the nonlinear two-tank level system at its desired level. The RGFACL algorithm 

successfully handled abrupt setpoint changes, its ability to adjust within nonlinear, time-varying operating 

conditions clear. Compared to traditional PID control strategies, the RGFACL method demonstrated greater 

robustness and flexibility with faster convergence, less overshoot, and improved tracking precision. These results 

highlight the engineering usability of the RGFACL algorithm in process control in industries, particularly in 

applications where nonlinearity and disturbance rejection are of greatest significance.  
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