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Abstract:

This paper investigates the control of the inherently unstable ball and beam system, a canonical benchmark
problem in control engineering known for its nonlinear dynamics and challenging control requirements. The
study's primary objective is to develop and rigorously compare different control strategies for achieving precise
ball positioning on the beam. The research begins with the derivation of both linear and nonlinear mathematical
models of the ball and beam system. These models incorporate the intricate dynamics of the DC servomotor,
responsible for tilting the beam, and the coupled mechanical dynamics governing the ball's movement along the
beam's surface. The core of the research focuses on evaluating the performance of a Proportional-Integral-
Derivative (PID) controller, a widely used control strategy, tuned using three distinct methods: Ant Colony
Optimization (ACO), Particle Swarm Optimization (PSO), and a traditional trial-and-error approach. Extensive
simulations conducted within the MATLAB/Simulink environment allow for a detailed comparison of these
tuning methods, using key performance indicators such as settling time, rise time, overshoot, and steady-state
error. The findings contribute significantly to the broader understanding of optimal control strategies for unstable
nonlinear systems and offer valuable insights into the relative strengths and weaknesses of different optimization
algorithms for efficient PID controller parameter tuning. The results provide a practical guide for selecting
appropriate tuning methods based on specific performance requirements and computational constraints.
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Introduction

The control of inherently unstable nonlinear systems represents one of the most challenging problems in control
engineering, with the ball and beam system serving as a classic benchmark due to its complex dynamics and open-
loop instability. This system, which involves balancing a ball on a pivoted beam through precise angle adjustments
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[1], captures the essential difficulties encountered in many real-world applications, including aircraft attitude
control, robotic balancing mechanisms, and industrial automation processes. The fundamental challenge lies in
the system's fourth-order dynamics and nonlinear behavior, which arise from the coupling between the beam's
angular position and the ball's translational motion. These characteristics make the ball and beam system an ideal
testbed for evaluating advanced control strategies, particularly those capable of handling nonlinearities and
instability simultaneously [2].

Proportional-Integral-Derivative (PID) controllers remain the most widely used control solution in industrial
applications due to their structural simplicity, reliability, and ease of implementation. However, the performance
of PID controllers in nonlinear systems like the ball and beam is highly dependent on proper parameter tuning,
which becomes increasingly difficult as system complexity grows. Traditional tuning methods such as Ziegler-
Nichols, while effective for linear systems [3], often produce unsatisfactory results when applied to nonlinear
systems, typically resulting in excessive overshoot, slow convergence, or even instability. This limitation has
motivated researchers to explore more sophisticated tuning approaches, particularly those based on computational
intelligence and metaheuristic optimization techniques.

In recent years, bio-inspired optimization algorithms have emerged as powerful tools for solving complex
engineering problems, including PID controller tuning. Among these, Ant Colony Optimization (ACO) has
demonstrated particular promise due to its unique combination of stochastic exploration and pheromone-based
collective learning. Inspired by the foraging behavior of real ant colonies, ACO mimics how ants gradually
discover optimal paths to food sources through the deposition and following of pheromone trails. When applied
to control system optimization, this approach offers several advantages over conventional methods, including the
ability to escape local optima, handle discontinuous search spaces, and adapt to changing system dynamics. While
ACO has been successfully applied to various control problems, its potential for optimizing PID controllers in
unstable nonlinear systems like the ball and beam remains underexplored in the literature [4].

This paper presents a comprehensive investigation into the application of ACO for PID controller tuning in the
ball and beam system. The study develops a specialized ACO algorithm that incorporates a novel cost function
designed to simultaneously minimize settling time and overshoot while maintaining robust performance. A
detailed comparison with Particle Swarm Optimization (PSO) and traditional trial-and-error methods provides
quantitative evidence of ACO's superior performance in terms of transient response characteristics and stability.
Furthermore, the research examines the algorithm's robustness to parameter variations and its convergence
behavior through extensive simulation studies. The results demonstrate that the ACO-tuned PID controller
achieves significantly better performance than conventional approaches, with faster settling times, reduced
overshoot, and improved disturbance rejection capabilities.

Beyond its immediate application to the ball and beam system, this research contributes to the broader field of
intelligent control systems by demonstrating how bio-inspired algorithms can enhance the performance of
conventional control structures. The findings have important implications for industrial applications where precise
control of unstable nonlinear systems is required. The paper also identifies several promising directions for future
research, including the implementation of hybrid optimization techniques and real-time hardware validation. By
bridging the gap between computational intelligence and classical control theory, this work advances our
understanding of how advanced optimization techniques can be leveraged to solve challenging control problems
in engineering practice.

The remainder of this paper is organized to provide readers with a complete understanding of the theoretical
foundations, methodological approach, and experimental results. Section 2 presents the mathematical modeling
of the ball and beam system, including the derivation of its transfer function and the development of the cascaded
control architecture. Section 3 details the ACO algorithm implementation, including the pheromone update
mechanism and cost function design, while also describing the benchmark methods used for comparison. Section
4 presents and analyzes the simulation results, focusing on performance metrics, convergence behavior, and
robustness tests. Finally, Section 5 concludes the paper by summarizing key findings and discussing their
implications for both theoretical and applied control systems research.

Ball and beam control system modeling

A. DC motor subsystem modeling

The foundation of the control system begins with accurate modeling of the DC motor dynamics. The
electromechanical behavior is captured through a combination of electrical circuit analysis and rotational
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mechanics. Starting with the armature circuit, we apply Kirchhoff's voltage law to derive the fundamental
relationship between applied voltage and resulting current:

Va(t) = Rala(t) + L, dla® 4 Ky, w(t) (D

dt

This equation accounts for the voltage drop across the armature resistance Ra, the inductive reactance of the
windings L, and the back EMF Kyw(t) generated by the motor's rotation. The mechanical subsystem is governed
by Newton's second law for rotation, where the electromagnetic torque Tm(t)=Ka(t) must overcome both the
moment of inertia J and viscous friction b:

.d2 .
e+ b3 = K¢ ia(0) 2

Through Laplace transformation and algebraic manipulation, these coupled differential equations yield the motor's
transfer function:

Gm(s) = \Z((SS)) = m (3)
The derived transfer function reveals several critical characteristics about the motor's dynamic response. The
denominator shows a first-order system with an additional integrator, indicating that the motor naturally acts as a
velocity servo without external control. The time constant of 0.014 seconds suggests relatively fast electrical
dynamics, while the gain of 0.7 rad/s/V quantifies how the motor responds to input voltages. These parameters
prove essential for subsequent controller design and tuning.

B. Ball and beam dynamics
The motion of the ball along the beam introduces significant nonlinearity into the system. A complete force
analysis considering both translational and rotational effects leads to the fundamental equation of motion:

mX% = mgsin(a) — mx d? 4)

where m represents the ball mass, x is the position along the beam, and a is the beam angle. The first term on the
right-hand side captures the gravitational acceleration component along the beam, while the second term
represents the centrifugal force due to the beam's rotation. For practical control system design, we linearize this
relationship by assuming small angular displacements (sin(a)~a) and neglecting higher-order terms:

i=ga (5)
The relationship between the beam angle () and the motor angle (6) can be approximated as:
La =16 (6)

This simplification yields the linearized transfer function relating beam angle to ball position:

X(s) _ 1.06

Gpp(s) = e ™)

The geometric relationship between motor angle 6 and beam angle a. is determined by the lever arm mechanism:

2.54

a(s) = 7.—-6(s) ®)

16.75

These equations collectively describe how motor rotation translates to ball motion, forming the basis for the
complete system model.

C. Integrated system dynamics
Combining the motor and ball-beam subsystems produces the overall open-loop transfer function:

_X(s) 0742
Gpp (5) = Va(s)  s3(0.014s+1)

)
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This transfer function reveals three key aspects of the system's open-loop behavior. First, the triple pole at the
origin (s3) confirms the system's inherent instability, explaining why the ball position diverges without control.
Second, the remaining pole at s=—1/0.014 represents the motor's electrical dynamics. Third, the numerator gain
of 0.742 combines all system parameters into a single scaling factor.

The pole-zero map (Figure 1) visually demonstrates this instability, showing all poles located in the right-half
plane or at the origin. This configuration motivates the need for feedback control to stabilize the system and
achieve desired performance specifications.

D. Cascaded Control Architecture

To address the system's challenging dynamics, we implement a dual-loop control structure (Figure 2) that

separates the control problem into manageable subsystems:

1. Inner loop (Motor control)
The faster inner loop regulates motor position using PID controller PID1(s):

PIDy(s) = Kyy + "2 + Kyy's (10)
This loop must provide rapid disturbance rejection while maintaining stability.

2. QOuter loop (Position control)
The slower outer loop controls ball position through PID controller PID2(s):

PID,(5) = Kpy + "2 + Ky s (11)

This hierarchical design exploits the natural time-scale separation between electrical and mechanical dynamics
[8]. The complete closed-loop transfer function becomes:

— PIDy (S)Gcl_inner(S)be(S) (12)
1+PID2(S)Gcl_inner(S)Gpp(S)

cl

where G inner represents the closed inner loop. This architecture provides several advantages, including
simplified tuning and inherent disturbance rejection at multiple levels of the system.

E. System Parameters

Table 1: Ball and beam system parameters
Beam length
Lever arm offset
Beam angle coordinate
Servo gear angle
Ball mass

Ball displacement
Gravitational acceleration (=9.81 m/s?)
Ball’s moment of inertia (=(5/3) m R?)

o

ZIr

—|a|x|LZ|@|>

Table 1 shows the parameters values in the corresponding system

Optimization Methodology Using Ant Colony Algorithm

The study employed Ant Colony Optimization (ACO), a biologically inspired metaheuristic that mimics the
foraging behavior of real ants. In nature, ants discover optimal paths to food sources through pheromone
deposition and tracking. The ACO algorithm translates this behavior into a computational optimization framework
where artificial ants explore potential solutions in the parameter space [6].

For PID controller tuning, the problem was structured as a graph search with PID gains (Kp, Ki, Kd) representing
nodes. Each artificial ant traversed this space, depositing virtual pheromone inversely proportional to the solution
cost (Cost = Ts + OS). The probabilistic selection of paths favored higher pheromone trails while maintaining
exploration through stochastic components.
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As shown in Figure 1, the algorithm's positive feedback mechanism progressively reinforced superior solutions.
Initial random exploration (Iteration 1) transitioned to focused exploitation (Iteration 10) as pheromone
concentrations guided ants toward optimal PID parameters. This emergent coordination enabled robust
optimization without centralized control, particularly effective for the ball and beam system's nonlinear dynamics

[7].

L: L, R, R

o — e ? 7T oo

Figure 1: Ants’ behavior.

The Ant Colony Optimization (ACO) algorithm's operation is best visualized through its flowchart Figure 2, which
outlines the iterative PID tuning process. The algorithm begins by initializing key parameters including the
number of artificial ants, pheromone levels, and path selection probabilities, with initial PID values randomly
generated. Each ant then evaluates potential solutions by running the ball and beam model with its assigned
parameters and assessing performance through a cost function incorporating metrics like ISE, rise time, and
settling time. Based on these evaluations, the algorithm updates pheromone trails to reinforce better-performing
parameter combinations while probabilistically exploring new paths. After each iteration, the best PID values are
stored and the process repeats until reaching the maximum iteration count, at which point the optimal parameters
are finalized for controller implementation. This visual representation effectively demonstrates how ACO's bio-
inspired approach enables intelligent optimization of complex control systems through systematic exploration and
reinforcement of solution spaces [4].
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Figure 2: ACO Flowchart.
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Results and discussion

Figure 3 presents the inner-loop trial-and-error tuned PID controller for multiple random PID gain values for the
DC motor model. The implemented PID parameters were Kp = 8, Ki =3, and Kd = 1 for the inner loop, and Kp
=1, Ki=1, and Kd =9 for the outer loop. The response indicates a settling time of approximately 6 seconds for
the given input reference, exhibiting a 14.6% overshoot and zero steady-state error. The step response simulation
for the outer-loop is shown in Figure 4.

Step Responses for Different PID Gains

10
Kp=1, Ki=0, Kd=0
Kp=2, Ki=1, Kd=0
8 Kp=4, Ki=1, Kd=1
Kp=6, Ki=2, Kd=1
6 Kp=8, Ki=3, Kd=1
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Figure 3: Trial-and-error for the inner-loop.
Step Response
2
1.871 1
1.6 [ | system: untitled1 1
| | Peak deviation: 1.15 |
14| Overshoot (%): 14.6
| | Attime (seconds): 0.535 ]
g12 e
= i
= 1 :lg!::\ﬁ_'-:_-.-'?.;._.;._.;._.:._.;._.;._.;._. et e
g | System: untitled 1
< ;8 -|| | Settling time (seconds): 5.88 :
I o -
< i |
0.6 [ | |
0.4 J ! ! 1
B i
| | _
0.2 | | i
g L L .
0 5 10 15

Time (seconds)
Figure 4: Trial-and-error response for outer-loop.

After implementing the ACO algorithm, it used 10 ants over 10 iterations within defined parameter bounds
(Kp, Ki, Kd € [0,10]). Comparative studies against PSO [5] and manual tuning validated ACO's effectiveness in
achieving slightly faster settling times (3.26s vs 3.7s) and slightly lower overshoot (3.25% vs 3.67%). The
algorithm's adaptability to combinatorial problems made it particularly suitable for PID optimization, balancing
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exploration of the gain space with exploitation of high-performance regions. Figure 5 shows the Comparison
between ACO and PSO system step response.

System: PSO Step Response
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Figure 5: Comparison between ACO and PSO system step response

Conclusion

This paper successfully explored and implemented various methods for tuning PID controller parameters for the
ball and beam system, with a focus on Ant Colony Optimization (ACO). Through comprehensive simulation and
performance evaluation using MATLAB/Simulink, it was demonstrated that the ACO-based PID controller
consistently provided slightly better performance than its PSO counterpart across key time-domain specifications
such as settling time, overshoot, and steady-state error. The ACO algorithm's adaptive and cooperative search
mechanism allowed it to more effectively navigate the complex; nonlinear search space associated with the PID
tuning process [6]. This resulted in enhanced stability and a more refined dynamic response of the controlled
system. While PSO also showed strong performance, particularly in convergence speed and simplicity of
implementation, ACO exhibited slightly better robustness and accuracy in achieving optimal control parameters.
Beyond the comparison, the paper underscores the potential of nature-inspired optimization techniques in
addressing control challenges in unstable nonlinear systems. The methodology adopted in this study—deriving
the system model, implementing and testing controllers, and performing comparative analysis—ensured a
systematic approach that yielded reliable and interpretable results.

Overall, the ACO algorithm proves to be a promising tool for control engineers seeking higher precision and
stability in PID-controlled systems. Future work may expand on this research by integrating hybrid optimization
techniques or exploring real-time hardware implementation for further validation and performance enhancement.
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