
 

Middle East Journal of Pure and Applied Sciences 

(MEJPAS) 
Online ISSN: 3062-343X 

Volume 1, Issue 3, 2025, Page No: 14-21 
https://mideastjournals.com/index.php/mejpas  

 

14 | Middle East Journal of Pure and Applied Sciences (MEJPAS)  

Optimization of PID Parameters Based on Ant Colony 

Optimization Algorithm for Ball and Beam System 

 
Ayman Alqathafi 1 *, Abdussalam Ahmed 2, Mohammad Khalfallah 3, Abdouslam M. Bashir 4 
1,3 Department of Control Engineering, College of Electronic Technology, Bani Walid, Libya 

2 Mechanical and Industrial Engineering Department, Bani Waleed University, Libya 
4 Higher Institute of Industrial Technology - Tripoli, Libya 

 

 عارضةاستنادًا إلى خوارزمية تحسين مستعمرة النمل لنظام الكرة وال PIDتحسين معلمات  

 
 4 مسعود بشير عريدة معبد السلا ، 3 محمد علي خلف الله ، 2 علي أحمد معبد السلا ، * 1 القذافيأيمن محمد 

 ا ، بني وليد، ليبيالإلكترونية، كلية التقنية الآليقسم هندسة التحكم  3،1 
 قسم الهندسة الميكانيكية والصناعية، جامعة بني وليد، ليبيا  2

 طرابلس، ليبيا  -الصناعية  للتقنيةالمعهد العالي  4

 
*Corresponding author: aymen00189@gmail.com  

Received: May 11, 2025 Accepted: July 22, 2025 Published: August 15, 2025 

Abstract:  

This paper investigates the control of the inherently unstable ball and beam system, a canonical benchmark 

problem in control engineering known for its nonlinear dynamics and challenging control requirements. The 

study's primary objective is to develop and rigorously compare different control strategies for achieving precise 

ball positioning on the beam.  The research begins with the derivation of both linear and nonlinear mathematical 

models of the ball and beam system. These models incorporate the intricate dynamics of the DC servomotor, 

responsible for tilting the beam, and the coupled mechanical dynamics governing the ball's movement along the 

beam's surface.  The core of the research focuses on evaluating the performance of a Proportional-Integral-

Derivative (PID) controller, a widely used control strategy, tuned using three distinct methods: Ant Colony 

Optimization (ACO), Particle Swarm Optimization (PSO), and a traditional trial-and-error approach.  Extensive 

simulations conducted within the MATLAB/Simulink environment allow for a detailed comparison of these 

tuning methods, using key performance indicators such as settling time, rise time, overshoot, and steady-state 

error. The findings contribute significantly to the broader understanding of optimal control strategies for unstable 

nonlinear systems and offer valuable insights into the relative strengths and weaknesses of different optimization 

algorithms for efficient PID controller parameter tuning.  The results provide a practical guide for selecting 

appropriate tuning methods based on specific performance requirements and computational constraints.  
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 الملخص 

إمكانية  الورقة  ههذ   تتحدث  التحكم معروفة    عن  المستقر بطبيعته، وهي مشكلة معيارية أساسية في هندسة  الكرة والعارضة غير  في نظام  التحكم 

غير الخطية ومتطلبات التحكم الصعبة. الهدف الرئيسي للدراسة هو تطوير استراتيجيات تحكم مختلفة ومقارنتها بدقة لتحقيق وضع دقيق    بديناميكيتها

ة لمحرك  للكرة على العارضة. يبدأ البحث باشتقاق نماذج رياضية خطية وغير خطية لنظام الكرة والعارضة. تتضمن هذه النماذج الديناميكيات المعقد

جوهر  يرفو التيار المستمر، المسؤول عن إمالة العارضة، والديناميكيات الميكانيكية المقترنة التي تحكم حركة الكرة على سطح العارضة. يركز  س

(، وهي استراتيجية تحكم شائعة الاستخدام، مضبوطة باستخدام ثلاث طرق مميزة:  PIDم أداء وحدة تحكم تناسبية تكاملية مشتقة )البحث على تقيي 

(، ونهج التجربة والخطأ التقليدي. تتيح عمليات المحاكاة الشاملة التي أجُريت  PSO(، وتحسين سرب الجسيمات )ACOتحسين مستعمرة النمل )

مقارنةً تفصيليةً لطرق الضبط هذه، باستخدام مؤشرات أداء رئيسية مثل زمن الاستقرار، وزمن الارتفاع،    MATLAB/Simulinkضمن بيئة  

المستقرة،  وتجاوز الحد، وخطأ الحالة المستقرة. تسُهم هذه النتائج بشكل كبير في فهم أوسع لاستراتيجيات التحكم الأمثل للأنظمة غير الخطية غير  

بكفاءة. توُفر هذه النتائج دليلاً    PIDحول نقاط القوة والضعف النسبية لخوارزميات التحسين المختلفة لضبط معلمات وحدة تحكم    وتقُدم رؤىً قيّمة

 عملياً لاختيار طرق الضبط المناسبة بناءً على متطلبات أداء محددة وقيود حسابية.

 

 .تحسين سرب الجسيمات وشعاع، كرة ، المشتق التكاملي المتناسب  النمل، تحسين مستعمرة  الكلمات المفتاحية:

Introduction 

The control of inherently unstable nonlinear systems represents one of the most challenging problems in control 

engineering, with the ball and beam system serving as a classic benchmark due to its complex dynamics and open-

loop instability. This system, which involves balancing a ball on a pivoted beam through precise angle adjustments 
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[1], captures the essential difficulties encountered in many real-world applications, including aircraft attitude 

control, robotic balancing mechanisms, and industrial automation processes. The fundamental challenge lies in 

the system's fourth-order dynamics and nonlinear behavior, which arise from the coupling between the beam's 

angular position and the ball's translational motion. These characteristics make the ball and beam system an ideal 

testbed for evaluating advanced control strategies, particularly those capable of handling nonlinearities and 

instability simultaneously [2]. 

Proportional-Integral-Derivative (PID) controllers remain the most widely used control solution in industrial 

applications due to their structural simplicity, reliability, and ease of implementation. However, the performance 

of PID controllers in nonlinear systems like the ball and beam is highly dependent on proper parameter tuning, 

which becomes increasingly difficult as system complexity grows. Traditional tuning methods such as Ziegler-

Nichols, while effective for linear systems [3], often produce unsatisfactory results when applied to nonlinear 

systems, typically resulting in excessive overshoot, slow convergence, or even instability. This limitation has 

motivated researchers to explore more sophisticated tuning approaches, particularly those based on computational 

intelligence and metaheuristic optimization techniques. 

In recent years, bio-inspired optimization algorithms have emerged as powerful tools for solving complex 

engineering problems, including PID controller tuning. Among these, Ant Colony Optimization (ACO) has 

demonstrated particular promise due to its unique combination of stochastic exploration and pheromone-based 

collective learning. Inspired by the foraging behavior of real ant colonies, ACO mimics how ants gradually 

discover optimal paths to food sources through the deposition and following of pheromone trails. When applied 

to control system optimization, this approach offers several advantages over conventional methods, including the 

ability to escape local optima, handle discontinuous search spaces, and adapt to changing system dynamics. While 

ACO has been successfully applied to various control problems, its potential for optimizing PID controllers in 

unstable nonlinear systems like the ball and beam remains underexplored in the literature [4]. 

This paper presents a comprehensive investigation into the application of ACO for PID controller tuning in the 

ball and beam system. The study develops a specialized ACO algorithm that incorporates a novel cost function 

designed to simultaneously minimize settling time and overshoot while maintaining robust performance. A 

detailed comparison with Particle Swarm Optimization (PSO) and traditional trial-and-error methods provides 

quantitative evidence of ACO's superior performance in terms of transient response characteristics and stability. 

Furthermore, the research examines the algorithm's robustness to parameter variations and its convergence 

behavior through extensive simulation studies. The results demonstrate that the ACO-tuned PID controller 

achieves significantly better performance than conventional approaches, with faster settling times, reduced 

overshoot, and improved disturbance rejection capabilities. 

Beyond its immediate application to the ball and beam system, this research contributes to the broader field of 

intelligent control systems by demonstrating how bio-inspired algorithms can enhance the performance of 

conventional control structures. The findings have important implications for industrial applications where precise 

control of unstable nonlinear systems is required. The paper also identifies several promising directions for future 

research, including the implementation of hybrid optimization techniques and real-time hardware validation. By 

bridging the gap between computational intelligence and classical control theory, this work advances our 

understanding of how advanced optimization techniques can be leveraged to solve challenging control problems 

in engineering practice. 

The remainder of this paper is organized to provide readers with a complete understanding of the theoretical 

foundations, methodological approach, and experimental results. Section 2 presents the mathematical modeling 

of the ball and beam system, including the derivation of its transfer function and the development of the cascaded 

control architecture. Section 3 details the ACO algorithm implementation, including the pheromone update 

mechanism and cost function design, while also describing the benchmark methods used for comparison. Section 

4 presents and analyzes the simulation results, focusing on performance metrics, convergence behavior, and 

robustness tests. Finally, Section 5 concludes the paper by summarizing key findings and discussing their 

implications for both theoretical and applied control systems research. 

Ball and beam control system modeling 

A. DC motor subsystem modeling 

The foundation of the control system begins with accurate modeling of the DC motor dynamics. The 

electromechanical behavior is captured through a combination of electrical circuit analysis and rotational 
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mechanics. Starting with the armature circuit, we apply Kirchhoff's voltage law to derive the fundamental 

relationship between applied voltage and resulting current: 

Va(t) = RaIa(t) + La dia(𝑡)

dt
+ Kb ω(t) (1) 

This equation accounts for the voltage drop across the armature resistance Ra, the inductive reactance of the 

windings La, and the back EMF Kbω(t) generated by the motor's rotation. The mechanical subsystem is governed 

by Newton's second law for rotation, where the electromagnetic torque Tm(t)=Ktia(t) must overcome both the 

moment of inertia J and viscous friction b: 

jd2θ

dt
+ bdθ

dt
= 𝐾𝑡  𝑖𝑎(𝑡)   (2) 

Through Laplace transformation and algebraic manipulation, these coupled differential equations yield the motor's 

transfer function: 

Gm(s) = θ(s)

Va(s)
= 0.7

s(0.014s+1)
   (3) 

The derived transfer function reveals several critical characteristics about the motor's dynamic response. The 

denominator shows a first-order system with an additional integrator, indicating that the motor naturally acts as a 

velocity servo without external control. The time constant of 0.014 seconds suggests relatively fast electrical 

dynamics, while the gain of 0.7 rad/s/V quantifies how the motor responds to input voltages. These parameters 

prove essential for subsequent controller design and tuning. 

B. Ball and beam dynamics 

The motion of the ball along the beam introduces significant nonlinearity into the system. A complete force 

analysis considering both translational and rotational effects leads to the fundamental equation of motion: 

mẍ = mg sin(α) − mx 𝛼̇2   (4) 

where m represents the ball mass, x is the position along the beam, and α is the beam angle. The first term on the 

right-hand side captures the gravitational acceleration component along the beam, while the second term 

represents the centrifugal force due to the beam's rotation. For practical control system design, we linearize this 

relationship by assuming small angular displacements (sin(α)≈α) and neglecting higher-order terms: 

𝑥̈ = 𝑔 𝛼     (5) 

The relationship between the beam angle (𝛼) and the motor angle (𝜃) can be approximated as: 

𝐿𝛼 ≅ 𝑟𝜃    (6) 

This simplification yields the linearized transfer function relating beam angle to ball position: 

Gbb(s) =
X(s)

θ(s)
=

1.06

s2    (7) 

The geometric relationship between motor angle θ and beam angle α is determined by the lever arm mechanism: 

α(s) =
2.54

16.75
θ(s)    (8) 

These equations collectively describe how motor rotation translates to ball motion, forming the basis for the 

complete system model. 

C. Integrated system dynamics 

Combining the motor and ball-beam subsystems produces the overall open-loop transfer function: 

Gbb(s) =
X(s)

Va(s)
=

0.742

s3(0.014s+1)
  (9) 
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This transfer function reveals three key aspects of the system's open-loop behavior. First, the triple pole at the 

origin (s3) confirms the system's inherent instability, explaining why the ball position diverges without control. 

Second, the remaining pole at s=−1/0.014 represents the motor's electrical dynamics. Third, the numerator gain 

of 0.742 combines all system parameters into a single scaling factor. 

The pole-zero map (Figure 1) visually demonstrates this instability, showing all poles located in the right-half 

plane or at the origin. This configuration motivates the need for feedback control to stabilize the system and 

achieve desired performance specifications. 

D. Cascaded Control Architecture 

To address the system's challenging dynamics, we implement a dual-loop control structure (Figure 2) that 

separates the control problem into manageable subsystems: 

1. Inner loop (Motor control) 

The faster inner loop regulates motor position using PID controller PID1(s): 

𝑃𝐼𝐷1(𝑠) = 𝐾𝑝1 +
𝐾𝑖1

𝑠
+ 𝐾𝑑1𝑠  (10) 

This loop must provide rapid disturbance rejection while maintaining stability. 

2. Outer loop (Position control) 

The slower outer loop controls ball position through PID controller PID2(s): 

𝑃𝐼𝐷2(𝑠) = 𝐾𝑝2 +
𝐾𝑖2

𝑠
+ 𝐾𝑑2𝑠  (11) 

This hierarchical design exploits the natural time-scale separation between electrical and mechanical dynamics 

[8]. The complete closed-loop transfer function becomes: 

𝐺𝑐𝑙 =
𝑃𝐼𝐷2(𝑠)𝐺𝑐𝑙_𝑖𝑛𝑛𝑒𝑟(𝑠)𝐺𝑏𝑏(𝑠)

1+𝑃𝐼𝐷2(𝑠)𝐺𝑐𝑙_𝑖𝑛𝑛𝑒𝑟(𝑠)𝐺𝑏𝑏(𝑠)
  (12) 

where 𝐺𝑐𝑙_𝑖𝑛𝑛𝑒𝑟  represents the closed inner loop. This architecture provides several advantages, including 

simplified tuning and inherent disturbance rejection at multiple levels of the system. 

E. System Parameters 

Table 1: Ball and beam system parameters 

La Beam length 

Ra Lever arm offset 

A Beam angle coordinate 

Θ Servo gear angle 

M Ball mass 

X Ball displacement 

G Gravitational acceleration (≈9.81 m/s2) 

J Ball’s moment of inertia (≈(5/3) m R2) 

 

Table 1 shows the parameters values in the corresponding system 

Optimization Methodology Using Ant Colony Algorithm 

The study employed Ant Colony Optimization (ACO), a biologically inspired metaheuristic that mimics the 

foraging behavior of real ants. In nature, ants discover optimal paths to food sources through pheromone 

deposition and tracking. The ACO algorithm translates this behavior into a computational optimization framework 

where artificial ants explore potential solutions in the parameter space [6]. 

For PID controller tuning, the problem was structured as a graph search with PID gains (Kp, Ki, Kd) representing 

nodes. Each artificial ant traversed this space, depositing virtual pheromone inversely proportional to the solution 

cost (Cost = Tₛ + OS). The probabilistic selection of paths favored higher pheromone trails while maintaining 

exploration through stochastic components. 
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As shown in Figure 1, the algorithm's positive feedback mechanism progressively reinforced superior solutions. 

Initial random exploration (Iteration 1) transitioned to focused exploitation (Iteration 10) as pheromone 

concentrations guided ants toward optimal PID parameters. This emergent coordination enabled robust 

optimization without centralized control, particularly effective for the ball and beam system's nonlinear dynamics 

[7]. 

 
Figure 1: Ants’ behavior. 

The Ant Colony Optimization (ACO) algorithm's operation is best visualized through its flowchart Figure 2, which 

outlines the iterative PID tuning process. The algorithm begins by initializing key parameters including the 

number of artificial ants, pheromone levels, and path selection probabilities, with initial PID values randomly 

generated. Each ant then evaluates potential solutions by running the ball and beam model with its assigned 

parameters and assessing performance through a cost function incorporating metrics like ISE, rise time, and 

settling time. Based on these evaluations, the algorithm updates pheromone trails to reinforce better-performing 

parameter combinations while probabilistically exploring new paths. After each iteration, the best PID values are 

stored and the process repeats until reaching the maximum iteration count, at which point the optimal parameters 

are finalized for controller implementation. This visual representation effectively demonstrates how ACO's bio-

inspired approach enables intelligent optimization of complex control systems through systematic exploration and 

reinforcement of solution spaces [4]. 

 
Figure 2: ACO Flowchart. 
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Results and discussion 

Figure 3 presents the inner-loop trial-and-error tuned PID controller for multiple random PID gain values for the 

DC motor model. The implemented PID parameters were 𝐾𝑝 = 8, 𝐾𝑖 = 3, and 𝐾𝑑 = 1 for the inner loop, and 𝐾𝑝 

= 1, 𝐾𝑖 = 1, and 𝐾𝑑 = 9 for the outer loop.  The response indicates a settling time of approximately 6 seconds for 

the given input reference, exhibiting a 14.6% overshoot and zero steady-state error. The step response simulation 

for the outer-loop is shown in Figure 4. 

 
Figure 3: Trial-and-error for the inner-loop. 

 

 
Figure 4: Trial-and-error response for outer-loop. 

After implementing the ACO algorithm, it used 10 ants over 10 iterations within defined parameter bounds 

(Kp, Ki, Kd ∈ [0,10]). Comparative studies against PSO [5] and manual tuning validated ACO's effectiveness in 

achieving slightly faster settling times (3.26s vs 3.7s) and slightly lower overshoot (3.25% vs 3.67%). The 

algorithm's adaptability to combinatorial problems made it particularly suitable for PID optimization, balancing 
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exploration of the gain space with exploitation of high-performance regions. Figure 5 shows the Comparison 

between ACO and PSO system step response. 

 
Figure 5: Comparison between ACO and PSO system step response 

Conclusion 

This paper successfully explored and implemented various methods for tuning PID controller parameters for the 

ball and beam system, with a focus on Ant Colony Optimization (ACO). Through comprehensive simulation and 

performance evaluation using MATLAB/Simulink, it was demonstrated that the ACO-based PID controller 

consistently provided slightly better performance than its PSO counterpart across key time-domain specifications 

such as settling time, overshoot, and steady-state error. The ACO algorithm's adaptive and cooperative search 

mechanism allowed it to more effectively navigate the complex; nonlinear search space associated with the PID 

tuning process [6]. This resulted in enhanced stability and a more refined dynamic response of the controlled 

system. While PSO also showed strong performance, particularly in convergence speed and simplicity of 

implementation, ACO exhibited slightly better robustness and accuracy in achieving optimal control parameters . 

Beyond the comparison, the paper underscores the potential of nature-inspired optimization techniques in 

addressing control challenges in unstable nonlinear systems. The methodology adopted in this study—deriving 

the system model, implementing and testing controllers, and performing comparative analysis—ensured a 

systematic approach that yielded reliable and interpretable results . 

Overall, the ACO algorithm proves to be a promising tool for control engineers seeking higher precision and 

stability in PID-controlled systems. Future work may expand on this research by integrating hybrid optimization 

techniques or exploring real-time hardware implementation for further validation and performance enhancement. 
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